Pillar 2
- 10.24435/materialscloud:5s-gm — Electronic excited states from physically-constrained machine learning, by E. Cignoni, D. Suman, J. Nigam, L. Cupellini, B. Mennucci, M. Ceriotti
Related MARVEL publication:- E. Cignoni, D. Suman, J. Nigam, L. Cupellini, B. Mennucci, M. Ceriotti, Electronic excited states from physically-constrained machine learning, arXiv:2311.00844 (2023). [Open Access URL]
Group(s): Ceriotti / Project(s): P2
- E. Cignoni, D. Suman, J. Nigam, L. Cupellini, B. Mennucci, M. Ceriotti, Electronic excited states from physically-constrained machine learning, arXiv:2311.00844 (2023). [Open Access URL]
- 10.24435/materialscloud:g2-fp — Mechanism of charge transport in lithium thiophosphate, by L. Gigli, D. Tisi, F. Grasselli, M. Ceriotti
Related MARVEL publication:- L. Gigli, D. Tisi, F. Grasselli, M. Ceriotti, Mechanism of charge transport in lithium thiophosphate, arXiv:2310.15679(2023). [Open Access URL]
Group(s): Ceriotti / Project(s): P2
- L. Gigli, D. Tisi, F. Grasselli, M. Ceriotti, Mechanism of charge transport in lithium thiophosphate, arXiv:2310.15679(2023). [Open Access URL]
- 10.24435/materialscloud:1g-w5 — SPAᴴM(a,b): encoding the density information from guess Hamiltonian in quantum machine learning representations, by K. R. Briling, Y. Calvino Alonso, A. Fabrizio, C. Corminboeuf
Related MARVEL publication:- K. R. Briling, Y. Calvino Alonso, A. Fabrizio, C. Corminboeuf, SPAHM(a,b): Encoding the Density Information from Guess Hamiltonian in Quantum Machine Learning Representations, Journal of Chemical Theory and Computation(2024). [Open Access URL]
Group(s): Corminboeuf / Project(s): P2
- K. R. Briling, Y. Calvino Alonso, A. Fabrizio, C. Corminboeuf, SPAHM(a,b): Encoding the Density Information from Guess Hamiltonian in Quantum Machine Learning Representations, Journal of Chemical Theory and Computation(2024). [Open Access URL]
- 10.24435/materialscloud:ps-20 — Surface segregation in high-entropy alloys from alchemical machine learning: dataset HEA25S, by A. Mazitov, M. A. Springer, N. Lopanitsyna, G. Fraux, S. De, M. Ceriotti
Related MARVEL publication:- A. Mazitov, M. A. Springer, N. Lopanitsyna, G. Fraux, S. De, M. Ceriotti, Surface segregation in high-entropy alloys from alchemical machine learning, arXiv:2310.07604 (2023). [Open Access URL]
Group(s): Ceriotti / Project(s): P2
- A. Mazitov, M. A. Springer, N. Lopanitsyna, G. Fraux, S. De, M. Ceriotti, Surface segregation in high-entropy alloys from alchemical machine learning, arXiv:2310.07604 (2023). [Open Access URL]
- 10.24435/materialscloud:aa-2w — Data-driven discovery of organic electronic materials enabled by hybrid top-down/bottom-up design, by J. T. Blaskovits, R. Laplaza, S. Vela, C. Corminboeuf
Related MARVEL publication:- J. T. Blaskovits, R. Laplaza, S. Vela, C. Corminboeuf, Data‐Driven Discovery of Organic Electronic Materials Enabled by Hybrid Top‐Down/Bottom‐Up Design, Advanced Materials 2023, 2305602 (2023). [Open Access URL]
Group(s): Corminboeuf / Project(s): P2
- J. T. Blaskovits, R. Laplaza, S. Vela, C. Corminboeuf, Data‐Driven Discovery of Organic Electronic Materials Enabled by Hybrid Top‐Down/Bottom‐Up Design, Advanced Materials 2023, 2305602 (2023). [Open Access URL]
- 10.24435/materialscloud:73-yn — Modeling high-entropy transition-metal alloys with alchemical compression: dataset HEA25, by N. Lopanitsyna, G. Fraux, M. A. Springer, S. De, M. Ceriotti
Related MARVEL publication:- N. Lopanitsyna, G. Fraux, M. A. Springer, S. De, M. Ceriotti, Modeling high-entropy transition metal alloys with alchemical compression, Physical Review Materials 7, 045802 (2023). [Open Access URL]
Group(s): Ceriotti / Project(s): P2
- N. Lopanitsyna, G. Fraux, M. A. Springer, S. De, M. Ceriotti, Modeling high-entropy transition metal alloys with alchemical compression, Physical Review Materials 7, 045802 (2023). [Open Access URL]
- 10.24435/materialscloud:71-21 — Lattice energies and relaxed geometries for 2'707 organic molecular crystals and their 3'242 molecular components., by R. Cersonsky, M. Pakhnova, E. Engel, M. Ceriotti
Related MARVEL publication:- R. K. Cersonsky, M. Pakhnova, E. A. Engel, M. Ceriotti, A data-driven interpretation of the stability of organic molecular crystals, Chemical Science 14, 1272–1285 (2023). [Open Access URL]
Group(s): Ceriotti / Project(s): P2, DD1
- R. K. Cersonsky, M. Pakhnova, E. A. Engel, M. Ceriotti, A data-driven interpretation of the stability of organic molecular crystals, Chemical Science 14, 1272–1285 (2023). [Open Access URL]
- 10.5281/zenodo.8003293 — Bispectrum degenerate B8 data, by J. Nigam, M. Ceriotti
Related MARVEL publication:- J. Nigam, S. N. Pozdnyakov, K. K. Huguenin-Dumittan, M. Ceriotti, Completeness of Atomic Structure Representations, arXiv:2302.14770 (2023). [Open Access URL]
Group(s): Ceriotti / Project(s): P2
- J. Nigam, S. N. Pozdnyakov, K. K. Huguenin-Dumittan, M. Ceriotti, Completeness of Atomic Structure Representations, arXiv:2302.14770 (2023). [Open Access URL]
- github.com/lab-cosmo/sphericart — sphericart, by M. Ceriotti, F. Bigi, G. Fraux, N. J. Browning, kanduri, C. Ortner, L. Zhang, G. Schwartz, and F. Musil
Related MARVEL publication:- F. Bigi, G. Fraux, N. J. Browning, M. Ceriotti, Fast evaluation of spherical harmonics with sphericart, The Journal of Chemical Physics 159, 064802 (2023). [Open Access URL]
Group(s): Ceriotti / Project(s): P2
- F. Bigi, G. Fraux, N. J. Browning, M. Ceriotti, Fast evaluation of spherical harmonics with sphericart, The Journal of Chemical Physics 159, 064802 (2023). [Open Access URL]
- 10.24435/materialscloud:js-pz — SPAᴴM: the spectrum of approximated hamiltonian matrices representations, by A. Fabrizio, K. R. Briling, C. Corminboeuf
Related MARVEL publication:
- A. Fabrizio, K. R. Briling, C. Corminboeuf, SPAHM: the spectrum of approximated Hamiltonian matrices representations, Digital Discovery 1, 286–294 (2022). [Open Access URL]
Group(s): Corminboeuf / Project(s): P2
- A. Fabrizio, K. R. Briling, C. Corminboeuf, SPAHM: the spectrum of approximated Hamiltonian matrices representations, Digital Discovery 1, 286–294 (2022). [Open Access URL]
- 10.24435/materialscloud:v4-sn — OSCAR: An extensive repository of chemically and functionally diverse organocatalysts, by S. Gallarati, P. van Gerwen, R. Laplaza, S. Vela, A. Fabrizio, C. Corminboeuf
Related MARVEL publication:
- S. Gallarati, P. van Gerwen, R. Laplaza, S. Vela, A. Fabrizio, C. Corminboeuf, OSCAR: an extensive repository of chemically and functionally diverse organocatalysts, Chemical Science 13, 13782–13794 (2022). [Open Access URL]
Group(s): Corminboeuf / Project(s): P2
- S. Gallarati, P. van Gerwen, R. Laplaza, S. Vela, A. Fabrizio, C. Corminboeuf, OSCAR: an extensive repository of chemically and functionally diverse organocatalysts, Chemical Science 13, 13782–13794 (2022). [Open Access URL]
- 10.24435/materialscloud:9g-k6 — Thermodynamics and dielectric response of BaTiO₃ by data-driven modeling, by L. Gigli, M. Veit, M. Kotiuga, G. Pizzi, N. Marzari, M. Ceriotti
Related MARVEL publication:
- L. Gigli, M. Veit, M. Kotiuga, G. Pizzi, N. Marzari, M. Ceriotti, Thermodynamics and dielectric response of BaTiO3 by data-driven modeling, npj Computational Materials 8, 209 (2022). [Open Access URL]
Group(s): Ceriotti, Marzari, Pizzi / Project(s): P2, P3, P4
- L. Gigli, M. Veit, M. Kotiuga, G. Pizzi, N. Marzari, M. Ceriotti, Thermodynamics and dielectric response of BaTiO3 by data-driven modeling, npj Computational Materials 8, 209 (2022). [Open Access URL]
- 10.24435/materialscloud:xw-5k — Ranking the synthesizability of hypothetical zeolites with the sorting hat, by B. A. Helfrecht, G. Pireddu, R. Semino, S. M. Auerbach, M. Ceriotti
Related MARVEL publication:
- B. A. Helfrecht, G. Pireddu, R. Semino, S. M. Auerbach, M. Ceriotti, Ranking the Synthesizability of Hypothetical Zeolites with the Sorting Hat, Digital Discovery 1, 779–789 (2022). [Open Access URL]
Group(s): Ceriotti / Project(s): P2
- B. A. Helfrecht, G. Pireddu, R. Semino, S. M. Auerbach, M. Ceriotti, Ranking the Synthesizability of Hypothetical Zeolites with the Sorting Hat, Digital Discovery 1, 779–789 (2022). [Open Access URL]
- 10.24435/materialscloud:36-ff — Predicting hot-electron free energies from ground-state data, by C. Ben Mahmoud, F. Grasselli, M. Ceriotti
Related MARVEL publication:
- C. B. Mahmoud, F. Grasselli, M. Ceriotti, Predicting hot-electron free energies from ground-state data, Physical Review B 106, L121116 (2022). [Open Access URL]
Group(s): Ceriotti / Project(s): P2
- C. B. Mahmoud, F. Grasselli, M. Ceriotti, Predicting hot-electron free energies from ground-state data, Physical Review B 106, L121116 (2022). [Open Access URL]
- 10.24435/materialscloud:3f-g3 — Unified theory of atom-centered representations and message-passing machine-learning schemes, by J. Nigam, S. Pozdnyakov, G. Fraux, M. Ceriotti
Related MARVEL publication:
- J. Nigam, S. Pozdnyakov, G. Fraux, M. Ceriotti, Unified Theory of Atom-Centered Representations and Message-Passing Machine-Learning Schemes, The Journal of Chemical Physics 156, 204115 (2022). [Open Access URL]
Group(s): Ceriotti / Project(s): P2
- J. Nigam, S. Pozdnyakov, G. Fraux, M. Ceriotti, Unified Theory of Atom-Centered Representations and Message-Passing Machine-Learning Schemes, The Journal of Chemical Physics 156, 204115 (2022). [Open Access URL]
- 10.24435/materialscloud:g5-5r — cell2mol: encoding chemistry to interpret crystallographic data, by S. Vela, R. Laplaza, Y. Cho, C. Corminboeuf
Related MARVEL publication:
- S. Vela, R. Laplaza, Y. Cho, C. Corminboeuf, cell2mol: encoding chemistry to interpret crystallographic data, npj Computational Materials 8, 188 (2022). [Open Access URL]
Group(s): Corminboeuf / Project(s): P2
- S. Vela, R. Laplaza, Y. Cho, C. Corminboeuf, cell2mol: encoding chemistry to interpret crystallographic data, npj Computational Materials 8, 188 (2022). [Open Access URL]
- 10.5281/zenodo.5172582 — lcmd-epfl/Local_Kernel_Regression: First release, by Raimon-Fa
Related MARVEL publication:
- R. Fabregat, A. Fabrizio, E. A. Engel, B. Meyer, V. Juraskova, M. Ceriotti, C. Corminboeuf, Local kernel regression and neural network approaches to the conformational landscapes of oligopeptides, Journal of Chemical Theory and Computation 18, 1467–1479 (2022). [Open Access URL]
Group(s): Ceriotti, Corminboeuf / Project(s): P2
- R. Fabregat, A. Fabrizio, E. A. Engel, B. Meyer, V. Juraskova, M. Ceriotti, C. Corminboeuf, Local kernel regression and neural network approaches to the conformational landscapes of oligopeptides, Journal of Chemical Theory and Computation 18, 1467–1479 (2022). [Open Access URL]
- 10.5281/zenodo.6627913 — Data to support "Physics-based representations for machine learning properties of chemical reactions, by P. Van Gerwen, A. Fabrizio, M. Wodrich, C. Corminboeuf
Related MARVEL publication:
- P. van Gerwen, A. Fabrizio, M. Wodrich, C. Corminboeuf, Physics-based representations for machine learning properties of chemical reactions, Machine Learning: Science and Technology 3, 045005 (2022). [Open Access URL]
Group(s): Corminboeuf / Project(s): P2
- P. van Gerwen, A. Fabrizio, M. Wodrich, C. Corminboeuf, Physics-based representations for machine learning properties of chemical reactions, Machine Learning: Science and Technology 3, 045005 (2022). [Open Access URL]